State of Charge Estimation for Lithium Battery Based on Fractional Order Square Root Cubature Kalman Filter and Adaptive Multi-innovation Unscented Kalman Filter

Author:

Wei Ying

Abstract

Accurate state of charge (SOC) estimation of batteries is of great significance for electric vehicles. A SOC estimation method based on a fractional order square root cubature Kalman filter (FOSRCKF) and an adaptive multi-innovation unscented Kalman filter (AMIUKF) is proposed. The battery is modelled using fractional order calculus theory and the model parameters are identified by adaptive genetic algorithm. The FOSRCKF estimates the battery SOC, while the AMIUKF online updates the internal resistance in the model, and there exchanges information between two filters. The experimental results under the Urban Dynamometer Driving Schedule (UDDS) and the US06 Highway Driving Schedule show that the proposed method has lower SOC estimation error and lower terminal prediction error compared with the traditional SRCKF method based on integer order models, which demonstrates the effectiveness, accuracy and robustness of the proposed method.

Publisher

Prof. Marin Drinov Publishing House of BAS (Bulgarian Academy of Sciences)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3