A dual active set algorithm for optimal sparse convex regression

Author:

Gudkov Aleksandr Aleksandrovich1,Mironov Sergei Vladimirovich1,Sidorov Sergei Petrovich1,Tyshkevich Sergey Viktorovich1

Affiliation:

1. N. G. Chernyshevsky Saratov State University (National Research University), Saratov, 410012, Russian Federation

Abstract

В последнее время задачи статистики с ограничениями на форму данных привлекают повышенное внимание. Одной из таких задач является задача поиска оптимальной монотонной регрессии. Проблема построения монотонной регрессии (которая также называется изотонной регрессией) состоит в том, чтобы для данного вектора (не обязательно монотонного) найти неубывающий вектор с наименьшей ошибкой приближения к данному. Выпуклая регрессия есть развитие понятия монотонной регрессии для случая $2$-монотонности (т.е. выпуклости). Как изотонная, так и выпуклая регрессия находят применение во многих областях, включая непараметрическую математическую статистику и сглаживание эмпирических данных. В данной статье предлагается итерационный алгоритм построения разреженной выпуклой регрессии, т.е. для нахождения выпуклого вектора $z\in \mathbb{R}^n$ с наименьшей квадратичной ошибкой приближения к данному вектору $y\in \mathbb{R}^n$ (не обязательно являющемуся выпуклым). Задача может быть представлена в виде задачи выпуклого программирования с линейными ограничениями. Используя условия оптимальности Каруша-Куна-Таккера, доказано, что оптимальные точки должны лежать на кусочно-линейной функции. Доказано, что предложенный двойственный алгоритм на основе активного множества для построения оптимальной разреженной выпуклой регрессии имеет полиномиальную сложность и позволяет найти оптимальное решение (для которого выполнены условия Каруша-Куна-Таккера).

Funder

Russian Foundation for Basic Research

Publisher

Samara State Technical University

Subject

Applied Mathematics,Mechanics of Materials,Condensed Matter Physics,Mathematical Physics,Modeling and Simulation,Software,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dual active-set algorithm for optimal 3-monotone regression;Izvestiya of Saratov University. Mathematics. Mechanics. Informatics;2022-05-23

2. Convergence Analysis of Penalty Decomposition Algorithm for Cardinality Constrained Convex Optimization in Hilbert Spaces;Mathematical Optimization Theory and Operations Research;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3