Affiliation:
1. Пермский национальный исследовательский политехнический университет, г. Пермь, 614990, Россия
2. Институт механики сплошных сред УрО РАН, г. Пермь, Россия
3. Perm State National Research Polytechnical University, Perm, 614990, Russian Federation
4. Institute of Continuous Media Mechanics UB RAS, Perm, 614013, Russian Federation
Abstract
Для обоснованного выбора определяющих уравнений материала при математическом моделировании процессов горячей и теплой обработки давлением тонколистовых металлических изделий с большой степенью вытяжки рассматриваются способы теоретического анализа и экспериментального подтверждения условий предельного деформирования материала.
Внимание сконцентрировано на кривой предельного деформирования листового материала на плоскости главных деформаций (одна из которых соответствует растяжению, а вторая может задавать растяжение или сжатие), характеристике локального состояния материала, отвечающей критическому росту локализации деформации. Локализация здесь понимается как локальное утонение листа и соответствует диффузной форме локализации, другие дефекты (полосы сдвига, образование трещин) развиваются из данного предельного состояния либо (образование складок и морщин) не являются локальными и требуют полной постановки задачи.
Данная кривая, определяющая условия реализации того или иного технологического процесса, может быть теоретически предсказана по заданным модели пластического течения и критерию вязкого разрушения материала и начальным несовершенствам. Для этого рассматриваются возможности схемы Марциньяка - Куцзинского (Marciniak - Kuczyński scheme), образец в рамках которой имеет две зоны однородной деформации и допускает аналитическое сведение задачи к системе нескольких обыкновенных дифференциальных уравнений, решаемых численно. Экспериментальный метод предусматривает испытание вдавливанием пуансона со сферическим или цилиндрическим наконечником в образец, вырубленный из листа, который в зависимости от глубины боковых вырезов может обеспечивать растяжение либо сжатие образца в поперечном направлении.
Оба подхода анализируются в работе в качестве инструментов выбора и экспериментальной верификации модели материала и критерия предельного состояния, помогающих решению сложной методической проблемы идентификации математической модели по достаточно нетипичным для механики деформируемого твердого тела экспериментам, сопровождающимся локализацией деформации.
С применением схемы Марциньяка - Куцзинского выполнен анализ ряда критериев текучести анизотропного листового материала, законов упрочнения и моделей повреждаемости, а также критериев предельного состояния на кривую предельного деформирования, для чего был разработан собственный алгоритм.
Экспериментальные стандартные схемы испытания по методам
Хасека (V. Hasek), Накадзимы (K. Nakajima) и Марциньяка (Z. Marciniak) были реализованы численно в пакете программ LS-DYNA, данные которых для сравнения также были нанесены на плоскость главных деформаций.
Обсуждается возможность интегрирования в схему Марциньяка - Куцзинского для каждой базовой жестко-пластической (склерономной) модели зависимости от температуры, скорости деформации и микроструктуры. Отмечено существенное ограничение теоретической схемы Марциньяка - Куцзинского рамками пропорционального изменения главных деформаций в образце вне и внутри зоны локализации деформации, а также то, что она не приспособлена для определения предельных свойств металлов, деформируемых в условиях деформационного разупрочнения, демонстрируемого алюминиевыми и титановыми сплавами и некоторыми сталями при температурах динамической рекристаллизации. Для более широкого диапазона условий деформирования материала альтернативы упомянутому численному методу предсказания кривой предельного деформирования не выявлено. Отдельным открытым и актуальным вопросом остается описание эволюции анизотропных свойств пластичности и разрушения вследствие анизотропного накопления поврежденности.
Funder
Russian Foundation for Basic Research
Publisher
Samara State Technical University
Subject
Applied Mathematics,Mechanics of Materials,Condensed Matter Physics,Mathematical Physics,Modeling and Simulation,Software,Analysis
Reference130 articles.
1. Chapter 12 Defects in thermo-mechanical processing
2. Mechanics of Sheet Metal Forming
3. Fracture Loci in Sheet Metal Forming: A Review
4. Деформация вязкопластического тела;Ильюшин A. A.;Ученые записки МГУ. Механика,1940
5. The deformation of a visco-plastic solid;Ilyushin A. A.;Uchenye Zapiski Moskovskogo Gosudarstvennogo Universiteta. Mekhanika,1940
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献