О разрешимости одной начально-граничной задачи для вырождающегося уравнения высокого четного порядка

Author:

Urinov Akhmadzhon Kushakovich12ORCID,Oripov Dastonbek D.2ORCID

Affiliation:

1. Fergana State University, Fergana, 150100, Uzbekistan

2. Institute of Mathematics named after V. I. Romanovsky of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, 100174, Uzbekistan

Abstract

Рассмотрено вырождающееся дифференциальное уравнение в частных производных высокого четного порядка в прямоугольнике. Для рассматриваемого уравнения сформулирована одна начально-граничная задача и исследованы единственность, существование и устойчивость ее решения. Единственность решения задачи доказана методом интегральных тождеств. Существование решения задачи исследовано методом разделения переменных. Здесь сначала исследована спектральная задача для обыкновенного дифференциального уравнения высокого четного порядка, вытекающая из поставленной задачи при разделении переменных. Построена функция Грина спектральной задачи. С еe помощью спектральная задача эквивалентно сведена к интегральному уравнению Фредгольма второго рода с симметричным ядром. Отсюда на основании теории интегральных уравнений заключено, что существует счетное число собственных значений и собственных функций спектральной задачи. Найдены условия, при которых заданная функция разлагается в равномерно сходящийся ряд Фурье по собственным функциям спектральной задачи. C использованием свойств функции Грина и собственных функций спектральной задачи доказана лемма о равномерной сходимости некоторых билинейных рядов. Доказаны также леммы о порядке коэффициентов Фурье заданной функции. Решение изучаемой задачи выписано в виде суммы ряда Фурье по системе собственных функций спектральной задачи. Равномерная сходимость этого ряда и рядов, полученных из него почленным дифференцированием, доказана с помощью лемм, перечисленных выше. В конце статьи получены две оценки для решения поставленной задачи, одна из которых - в пространстве квадратично суммируемых функций с весом, а другая - в пространстве непрерывных функций. Из этих неравенств следует устойчивость решения в соответствующих пространствах.

Publisher

Samara State Technical University

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3