Расширенная математическая модель обратной задачи ядерного гамма-резонанса. Достоверность и информативность применения

Author:

Nemtsova Olga Mikhailovna1ORCID,Konygin Grigorii Nikolaevich1ORCID,Veselkov Ivan S.1ORCID

Affiliation:

1. Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Izhevsk, 426067, Russian Federation

Abstract

При изучении свойств твердых растворов на основе железа методом мессбауэровской спектроскопии возникает проблема интерпретации результатов обработки экспериментальных данных в рамках традиционной математической модели. Поскольку для разупорядоченных, например в результате механоактивации, твердых растворов характерно наличие ансамбля различных локальных атомных конфигураций, соответствующие им мессбауэровские спектры содержат большое количество смещенных относительно друг друга спектральных составляющих с близкими значениями параметров сверхтонкого взаимодействия. При этом величина и знак смещения определяются многими факторами: количественным распределением атомов каждого сорта в координационных сферах, симметрией их распределения относительно оси квантования, возможным локальным смещением относительно среднестатистического положения в кристаллографической структуре и т.д. Аналитически учесть все эффекты смещения в математической модели, как правило, невозможно. Предложенная расширенная математическая модель описания мессбауэровских спектров твердых растворов дает возможность учесть смещения спектральных составляющих посредством введения в модель функции нормального распределения Гаусса, описывающей статистический набор локальных искажений. Ширина распределения Гаусса позволяет оценить степень локальных искажений кристаллической решетки, возникающих из-за различий в размерах атомов смешиваемых компонентов, локальных искажений структуры и симметрии окружения резонансного атома. Обратная задача ядерного гамма-резонанса выражается интегральным уравнением Фредгольма 1 рода и является некорректно поставленной задачей с априорными ограничениями на искомое решение. Введение в ядро интегрального уравнения двух функций Гаусса с неизвестными априори ширинами линий приводит к проблеме решения уравнения классическими методами. В работе предложен алгоритм получения достоверного решения, опирающийся на метод регуляризации Тихонова с коррекцией параметров ядра интегрального уравнения. Достоверность и информативность расширенной математической модели обратной задачи ядерного гамма-резонанса продемонстрирована на примерах исследования реальных объектов.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

Samara State Technical University

Reference66 articles.

1. Investigation of mechanosynthesized Fe50Ni40Al10 powders

2. Mössbauer effect study of fine atomic structure of Fe50Al40Ni10 powders

3. Формирование структурно-фазового состава и магнитных свойств нанокомпозитов Fe(Fe$_{3}$C, Fe$_{5}$SiC)--SiO$_2 $ в процессе механосинтеза;Ломаева С. Ф., Маратканова А. Н., Немцова О. М. [и др.];ФММ,2010

4. The formation of structure and phase composition and magnetic properties of Fe(Fe3C, Fe5SiC)-SiO2 nanocomposites upon mechanical alloying

5. Формирование метастабильных фаз при механоактивации сплава Fe-Si в жидких органических средах;Ломаева С. Ф., Немцова О. М., Елсуков Е. П. [и др.];Химия в интересах устойчивого развития,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3