Author:
Bazarov Alexander A.,Navasardyan Ashot A.,Bondareva Natalya V.
Abstract
This publication discusses a set of issues on computer modeling of electromagnetic and thermal processes in an induction crystallizer of an aluminum melt, in which forces are created between the melt and the inductor coil, compressing the column of liquid material and preventing direct contact of the melt with the crucible walls. In known induction systems using electromagnetic pressure on molten metal, for crystallization, the parameters of the inductor are selected so that, with sufficient force, the temperature does not rise due to internal sources of heat release with sufficient water cooling of the surface. In the proposed work, heat removal mainly occurs through contact with a water-cooled support surface.
The aim of the work is to determine the process parameters at which the required electromagnetic force is formed on the melt wall, taking into account the change in the current density at the interface between the solid and liquid phases of aluminum.
When determining the parameters of induction crystallizers, the temperature dependences of the thermophysical properties were used. Variants of the inductor realization are investigated, which makes it possible to cover the entire volume of the melt, inside which significant changes in the electrical conductivity of aluminum and the power of internal heat sources are observed. Obtaining a cylindrical shape of the ingot, in contrast to the known electromagnetic crystallizers, is achieved by determining the design of the inductor, which provides a decrease in the repulsive electromagnetic force acting on the side surface of the melt in height. The results of the study showed the possibility of using the crystallizer at various ratios of the height and diameter of the melt column, and the intensity of cooling. The efficiency of the process for aluminum increases with an increase in the radius of the melt column, which also leads to a decrease in shape distortion in the region of the upper end.
Publisher
Samara State Technical University
Reference16 articles.
1. Nepreryvnoye lit’ye v elektromagnitnyy kristallizator / Z.N. Getselev, G.A. Balakhontsev, F.I. Kvasov e dr. M.: Metalluggiya, 1983. 152 c.
2. Pervukhin M.V., Sergeev N.V., Khatsayuk M.Yu. Elektromagnitnyy kristallizator dlya poluchiniya nepreryvno litykh slitkov s vysokimi skorostyami okhlazhdeniya // Izvestiya Rossiyskoy akademii nauk. Energetika. 2013. No. 3. Рр. 121–129.
3. Avdulov A.A., Usynina G.P., Sergeev N.V., Gudkov I.S. Tekhnologiya lit’ya aluminievykh splavov v elektromagninyy kristallizator dlya proizvodstva dlinnomernykh zagotovok malogo diametra // Zhurnal Sibirskogo federal”nogo universiteta. Seriya; Knhimi”ya. 2017. Vol. 10. No. 1. Рр. 82–89.
4. Avdulov A.A., Sergeev N.V., Gudkov I.S., Timofeev V.N., Gorokhov Yu.V., Avdulova Yu.S. Razrabotka tekhnologii proizvodstva provoloki iz spetsial”nykh aluminievykh solavov na osnove sposoba lit”ya v elektromagnitnyy kristallizator I nepreryvnogo pressovaniya sposobom conform // Zhurnal Sibirskogo federal‘mnogo universiteta. Seriya: Tekhnika I tekhnologiyi. 2017. Vol. 10. No. 1. Рр. 85–94.
5. Kolyadov Ye.V., Gerasimov V.V., Visik Ye.M., Mezhin Yu.A. Lit’ye metodom napravlennoy kristallizatsii s upravlyayemym gradientom temperatury na fronte kristallizatsii // Liteynoye proizvodstvo. 2016. No. 8. Рр. 24–26.