Рассеяние вихрей в абелевых моделях Хиггса на компактных римановых поверхностях

Author:

Пальвелев Роман Витальевич1ORCID,Palvelev Roman Vital'evich2

Affiliation:

1. Московский государственный университет им. М. В. Ломоносова, механико-математический факультет, г. Москва, 119899, Россия

2. M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, 119899, Russian Federation

Abstract

Абелевы модели Хиггса на римановых поверхностях являются естественным обобщением абелевой $(2+1)$-мерной модели Хиггса на плоскости, возникающей в теории сверхпроводимости. В модели на плоскости ранее было доказано, что при «медленном» движении двух вихрей (нулей поля Хиггса) после лобового столкновения они испытывают рассеяние под прямым углом, а при симметричном столкновении $N$ вихрей под равными углами происходит рассеяние на угол $\pi/N$. В критическом случае (при значении параметра модели, равном единице) этот результат можно получить с помощью так называемого адиабатического принципа, который утверждает, что динамические решения модели с малой кинетической энергией могут быть приближены геодезическими на пространстве модулей статических решений в метрике, задаваемой кинетической энергией (кинетической метрике). Адиабатический принцип в абелевой $(2+1)$-мерной модели Хиггса в критическом случае был недавно строго обоснован. Хотя явный вид метрики не удается выписать даже в случае двух вихрей, наличие требуемых геодезических удается установить, пользуясь гладкостью метрики в координатах, задаваемых симметрическими функциями положений вихрей, и свойствами симметрии метрики. Локальный аналог этого результата можно доказать, пользуясь только гладкостью кинетической метрики. Это позволяет предположить, что локальный вариант утверждения о рассеянии $N$ вихрей на угол $\pi/N$ при симметричном столкновении переносится на случай моделей на римановых поверхностях. В работе показано, что наличие геодезических кинетической метрики, описывающих требуемое поведение вихрей, в моделях на компактных римановых поверхностях следует из гладкости кинетической метрики в симметрических координатах в окрестности точек столкновения всех вихрей. Указанное свойство гладкости доказано в случае компактных римановых поверхностей. Применив адиабатический принцип для моделей на римановых поверхностях, можно получить утверждение о локальном рассеянии медленно движущихся вихрей в динамических моделях на компактных римановых поверхностях. К сожалению, этот адиабатический принцип еще нуждается в строгом обосновании.

Funder

Russian Foundation for Basic Research

Russian Academy of Sciences - Federal Agency for Scientific Organizations

Ministry of Education and Science of the Russian Federation

Publisher

Samara State Technical University

Subject

Applied Mathematics,Mechanics of Materials,Condensed Matter Physics,Mathematical Physics,Modelling and Simulation,Software,Analysis

Reference16 articles.

1. Рассеяние вихрей в абелевых моделях Хиггса на компактных римановых поверхностях;Пальвелев Р. В.,2014

2. Scattering of vortices in Abelian Higgs models on compact Riemann surfaces;Palvelev R. V.,2014

3. Progress in Physics;Jaffe A., Taubes C.,1980

4. A remark on the scattering of BPS monopoles

5. Vortex string motion in the abelian Higgs model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3