О задаче Дирихле для эллиптического уравнения

Author:

Гущин Анатолий Константинович1ORCID,Gushchin Anatolii Konstantinovich2

Affiliation:

1. Математический институт им. В. А. Стеклова Российской академии наук, г. Москва, 119991, Россия

2. Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, 119991, Russian Federation

Abstract

Хорошо известно, что естественно возникающее из вариационных принципов и удобное в применении понятие обобщeнного решения из соболевского пространства $W_2^1$ задачи Дирихле для эллиптического уравнения второго порядка не является в буквальном смысле обобщением понятия классического решения: не любая непрерывная на границе области функция является следом функции из $W_2^1$. Обобщение обоих этих понятий было предложено в 1976 году Валентином Петровичем Михайловым, памяти которого посвящена настоящая работа. В определении Михайлова граничное значение решения берется из $L_2$; естественно обобщается это понятие и на случай граничной функции из $L_p$, $p > 1$. Впоследствии автором настоящей работы было доказано, что при выполнении не слишком обременительных условий такие решения обладают свойством $(n-1)$-мерной непрерывности. Это свойство аналогично классическому определению равномерной непрерывности, но вместо значения функции в точке следует рассматривать еe следы на мерах из специального класса, немного более узкого, чем класс мер Карлесона. След функции на мере является элементом пространства $L_p$ по этой мере. $(n-1)$-мерная непрерывность означает, что следы на мерах близки, если близки эти меры. Определение близости мер учитывает близость (в специальном смысле) их носителей, а расстояние между следами (они элементы различных пространств) вводится с помощью погружения в пространство функций удвоенного числа переменных. Свойство $(n-1)$-мерной непрерывности позволило дать другое, по форме весьма близкое к классическому определение решения - $(n-1)$-мерно непрерывное решение. Как и понятия классического и обобщeнного решений оно не требует условий гладкости границы рассматриваемой области. В отличие от случаев классического и обобщeнного решений задача Дирихле в постановке Михайлова и тем более с $(n-1)$-мерно непрерывным решением исследована недостаточно полно. Прежде всего это относится к условиям на правую часть уравнения, при которых задача Дирихле разрешима. В работе приведeн ряд новых результатов в этом направлении. Кроме того, обсуждаются условия на коэффициенты уравнения, границу ограниченной области, в которой рассматривается задача, и заданные граничные значения решений. При этом результаты о разрешимости и о граничном поведении решений сравниваются с аналогичными теоремами, относящимися к случаю классического и обобщeнного решений, обсуждаются некоторые возникающие при таком сравнении нерешeнные задачи.

Funder

Russian Foundation for Basic Research

Publisher

Samara State Technical University

Subject

Applied Mathematics,Mechanics of Materials,Condensed Matter Physics,Mathematical Physics,Modeling and Simulation,Software,Analysis

Reference107 articles.

1. О задаче Дирихле для эллиптического уравнения;Гущин А. К.,2014

2. On the Dirichlet Problem for an Elliptic Equation;Gushchin A. K.,2014

3. О задаче Дирихле для эллиптического уравнения второго порядка;Михайлов В. П.;Диффер. уравн.,1976

4. The Dirichlet problem for a second order elliptic equation;Mikhaylov V. P.;Differ. Equ.,1976

5. О задаче Дирихле для эллиптического уравнения второго порядка;Гущин А. К.;Матем. сб.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3