Affiliation:
1. Московский физико-технический институт (национальный исследовательский университет), г. Долгопрудный, 141700, Россия
2. Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russian Federation
Abstract
Рассматривается задача обтекания гладкого выпуклого тела, движущегося горизонтально с постоянной дозвуковой скоростью в покоящейся стратифицированной атмосфере, состоящей из идеального газа. По условию задачи (вертикальный) градиент функции Бернулли (с учетом потенциальной энергии однородного поля тяжести) в покоящейся атмосфере на всех высотах отличен от нуля (как это имеет место в стандартной атмосфере Земли на высотах до 51 км), а высота полета не превышает величину, равную квадрату скорости полета тела, деленного на удвоенное ускорение свободного падения. Поверхность земли считается плоской. Используется система координат, связанная с телом. Рассматривается общий пространственный случай (несимметричное тело или симметричное тело под углом атаки). Используется общепринятое предположение о том, что в некоторой окрестности передней линии торможения (линии тока, которая заканчивается на теле в передней точке торможения) нет второй точки торможения, параметры течения в этой окрестности дважды непрерывно дифференцируемы, а точка торможения является точкой растекания (т.е. в некоторой ее окрестности все линии тока на поверхности тела начинаются в этой точке). На основе строгого анализа уравнений Эйлера показывается, что существование стационарного решения задачи противоречит этому общепринятому (но строго не доказанному) представлению о линии торможения. Это свойство решения задачи названо парадоксальным и вызывает сомнение в существовании решения.
Publisher
Samara State Technical University
Subject
Applied Mathematics,Mechanics of Materials,Condensed Matter Physics,Mathematical Physics,Modeling and Simulation,Software,Analysis