Affiliation:
1. Lomonosov Moscow State University
Abstract
Gibbs-ringing artifact is a common artifact in MRI image processing. As MRI raw data is taken in a frequency domain, 2D in- verse discrete Fourier transform is applied to visualize data. Inability to take inverse Fourier transform of full spectrum (full k-space) leads to the insufficient sampling of the high frequency data and results in a well-known Gibbs phenomenon. It is worth to notice that truncation of high frequency information generates a significant blur, thus some techniques from other image restoration problems (for example, image deblur task) can be successfully used. We propose attention-based convolutional neural network for Gibbs-ringing reduction which is the extension of recently proposed GAS-CNN (Gibbs-ringing Artifact Suppression Convolutional Neural Network). Proposed method includes simplified non-linear mapping, amended by LRNN (Layer Recurrent Neural Network) refinement block with feature attention module, controlling the correlation between input and output tensors of the refinement unit. The research shows that the proposed post-processing refinement construction considerably simplifies the non-linear mapping.
Funder
Russian Foundation for Basic Research
Publisher
MONOMAX Limited Liability Company
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献