A Method for Actin Filament Tracking in Fluorescent Microscopy Images

Author:

Kononykhin Danil1,Berg Valentina2,Krylov Andrey1,Sorokin Dmitry1

Affiliation:

1. Lomonosov Moscow State University

2. Ural Branch of the Russian Academy of Sciences

Abstract

The automated tracking of subcellular structures in live microscopy image sequences is an actual problem in many biological research areas. A universal solution for this problem still does not exist due to a huge variety of data of different nature. In this work, we propose an algorithm for tracking actin filaments in 2D fluorescent image sequences. The filaments are moving in a random and abrupt manner frequently crossing each other. We used steerable filters based ridge detection followed by crossing filaments correction algorithm for filaments detection. The tracking was performed using a greedy nearest neighbor method. The quantitative evaluation of our approach was performed on several manually annotated image sequences using the object tracking quality metric MOTA. It was shown that the proposed approach outperforms an existing approach in tracking accuracy. In addition, the proposed approach allows processing crossed filaments, unlike the existing methods.

Funder

Russian Foundation for Basic Research

Publisher

MONOMAX Limited Liability Company

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image Analysis and Enhancement: General Methods and Biomedical Applications;Pattern Recognition and Image Analysis;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3