The Cluster Low-Streams Regression Method for Fast Computations of Top-of-the-Atmosphere Radiances in Absorption Bands

Author:

del Aguila Ana1ORCID,Efremenko Dmitry1ORCID

Affiliation:

1. Remote Sensing Technology Institute, German Aerospace Center (DLR)

Abstract

Atmospheric composition sensors provide a huge amount of data. A key component of trace gas retrieval algorithms are radiative transfer models (RTMs), which are used to simulate the spectral radiances in the absorption bands. Accurate RTMs based on line-by-line techniques are time-consuming. In this paper we analyze the efficiency of the cluster low-streams regression (CLSR) technique to accelerate computations in the absorption bands. The idea of the CLRS method is to use the fast two-stream RTM model in conjunction with the line-by-line model and then to refine the results by constructing the regression model between two- and multi-stream RTMs. The CLSR method is applied to the Hartley-Huggins, O2 A-, water vapour and CO2 bands for the clear sky and several aerosol types. The median error of the CLSR method is below 0.001 %, the interquartile range (IQR) is below 0.1 %, while the performance enhancement is two orders of magnitude.

Publisher

MONOMAX Limited Liability Company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3