Arsitektur Convolutional Neural Network untuk Model Klasifikasi Citra Batik Yogyakarta

Author:

Prayoga Arya,Maimunah ORCID,Sukmasetya PristiORCID,Muhammad Resa Arif Yudianto ,Rofi Abul Hasani

Abstract

Batik is an Indonesian culture that has been recognized as a world heritage by UNESCO. Indonesian batik has a variety of different motifs in each region. One area that is famous for its batik motifs is Yogyakarta. Yogyakarta has a variety of batik motifs such as ceplok, kawung, and parang which can be differentiated based on the pattern. Yogyakarta batik motifs need to be preserved so they do not experience extinction, one way is by introducing Yogyakarta batik motifs. The recognition of Yogyakarta batik motifs can utilize technology to classify images of Yogyakarta batik motifs based on patterns using the Convolutional Neural Network (CNN). The Yogyakarta batik motif images used for classification totaled 600 images consisting of 3 different motifs such as ceplok, kawung, and parang. Image classification using CNN depends on the architectural model used. The CNN architecture consists of two stages, namely Convolutional for feature extraction and Neural Network for classification. The CNN architectural models made for the introduction of Yogyakarta batik motifs totaled 7 models which were distinguished at the feature extraction stage. The highest accuracy results in the classification of Yogyakarta batik motif images using CNN were obtained in the 6th model. The 6th model has an accuracy of 87.83%, an average precision of 88.46% and an average recall of 87.66%. The accuracy, precision, and recall values ​​obtained by the 6th model are above 80%, which means that the 6th model can classify Yogyakarta batik motifs quite well.

Publisher

Indonesian Society of Applied Science (ISAS)

Subject

Modeling and Simulation

Reference20 articles.

1. A. A. Trixie, “Filosofi Motif Batik sebagai Identitas Bangsa Indonesia,” Folio, vol. 1, no. 1, pp. 1–9, 2020, [Online]. Available: https://journal.uc.ac.id/index.php/FOLIO/article/view/1380

2. M. U. Januarko, “Kemitraan Masyarakat Dan Strategi Pemasaran Batik Kelompok Pembatik Palbatu,” Digilib.Esaunggul.Ac.Id, vol. 6, no. 2, pp. 145–149, 2020, [Online]. Available: https://digilib.esaunggul.ac.id/public/UEU-Journal-18001-11_0740.pdf

3. A. Wulandari, Batik Nusantara: Makna filosofis, cara pembuatan, dan industri batik. Penerbit Andi, 2022. [Online]. Available: https://books.google.co.id/books?hl=id&lr=&id=mm13EAAAQBAJ&oi=fnd&pg=PR5&dq=batik+wulandari&ots=fEnBR85C_r&sig=gYkhBQ4X44pwXJbzJLl0ru9unFc&redir_esc=y#v=onepage&q=batik wulandari&f=false

4. L. M. Hakim, “Batik Sebagai Warisan Budaya Bangsa dan Nation Brand Indonesia,” Nation State J. Int. Stud., vol. 1, no. 1, pp. 61–90, 2018, doi: 10.24076/nsjis.2018v1i1.90.

5. A. Tjahyanto and F. J. Atletiko, “Peningkatan Kinerja Pengklasifikasi Objek Bawah Laut dengan Deep Learning,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, pp. 753–760, 2022, doi: 10.30812/matrik.v21i3.1466.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3