Abstract
Fine art paintings classification based on artistic style is a field of growing interest. Pointillist style is one of the most easily recognized painting styles by humans, due to its characteristic tiny detached paintbrushes of pure colour. In this paper automatic discrimination of artworks belonging to the style of Pointillism is investigated. The opposite styles considered are Cubism, Purism, Naïve art and Impressionism. Several colour and texture features are considered and a feature selection procedure is employed to reveal the most relevant ones to pointillist movement. Binary classification is performed, both in supervised and unsupervised mode, to assess the features’ discriminative ability. A small number of selected features is shown, by simulations results, to be quite powerful predictors resulting in a classification accuracy of 94% for a SVM classifier, 93.5% for a KNN classifier and 87% for a k-means classifier.
Publisher
International Journal of Electrical and Computer Engineering Research
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献