Processing Eruca sativa leaves in the nanoscale and study its effectiveness for removing Cibacron red dye from their aqueous solutions

Author:

Mahdi Rheima Ahmed,Khanjar Aya Qasim Khanjar,Farhan Ahlam Mohammed

Abstract

    The discharge of dyes into the water is a significant source of pollution, which is especially concerning given that textile mills are the primary contributor. Nanomaterial-based solutions to this issue have required extensive research and investigation due to their complex nature. In this research, novel nanoparticle were successfully synthesized using the leaves of the Eruca sativa plant. The nano was analyzed using scanning and transmission electron microscopy (SEM and TEM) measurements, and their crystal structure was determined using the X-ray diffraction technique (XRD). The incorporation of NPs resulted in an increase in the uptake of the Cibacron red dye. At a contact time of 30 minutes, observed a faster adsorption onto ES. In the process of describing the adsorption process, the Langmuir model (R2 =0.9817) and the pseudo-second-order model (R2 = 0.9884) were the most appropriate models to use. An investigation into thermodynamics was carried out in order to arrive at the following values for the parameters of G, H, and S: -1.173 kJ/mol, 16.794 J/mol K and 56.05 J/mol. In conclusion, the novel nano that was synthesized is an excellent adsorbate surface for the Cibacron- red dye.  

Publisher

College of Education for Pure Science (Ibn Al-Haitham)

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3