Elastic-plastic properties of Li2B4O7 determined by nanoindentation

Author:

Chobal Iryna,Chobal Oleksandr,Myslo Yuliia,Petryshynets Ivan,Rizak Vasyl

Abstract

Relevance. Crystalline and amorphous lithium tetraborate (Li2B4O7) has a wide range of practical applications due to its physical properties. The knowledge of the mechanical characteristics of the surface layers of these materials, which are studied by nanoindentation, is necessary for optimising the technological processes for obtaining “optically perfect” samples. Aim. A comparative study of the mechanical properties and deformation mechanisms of glassy and crystalline Li2B4O7 samples in a wide range of applied loads. Methodology. The elastic-plastic properties of crystalline and glassy lithium tetraborate were investigated using the multiple-loading cyclic nanoindentation method. The samples were measured at maximum loading forces of 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 mN. Four measurements (in the form of a 2x2 matrix) were made at a distance of 50 µm from each other on each sample and at each load. Young’s modulus, hardness, and Poisson’s ratio of Li2B4O7 glass were also calculated using the Makishima-Mackenzie theory. Results. The load-displacement curves and graphs of the dependence of the average contact pressure on the displacement of the diamond Berkovich indenter were obtained, which have a “smooth” shape and no anomalies associated with “pop-in” or “pop-out” effects. The indentation modulus (Young’s modulus E) and hardness H of the studied samples were obtained from the experimental P-h load-displacement diagrams. The measured values mainly depend on the applied load or the contact depth of the indenter penetration into the crystalline and vitreous lithium tetraborate. Conclusions. Both the hardness and Young’s modulus of Li2B4O7 glass are lower than those of the single crystal, indicating a lower resistance of amorphous lithium tetraborate to elastic and plastic deformations. The obtained experimental values of hardness and Young’s modulus of Li2B4O7 glass correlate well with the results of the calculation within the framework of the Makishima-Mackenzie theory. Multiple-loading cyclic nanoindentation leads to deformation densification of glassy Li2B4O7 due to changes in the angles and lengths of chemical bonds, which leads to a decrease in the free volume in the medium-order structure of glass, as well as a change in the coordination of Boron atoms relative to Oxygen, i.e., the transformation of three-coordinated Boron into four-coordinated Boron

Publisher

Scientific Journals Publishing House

Subject

General Physics and Astronomy,Education,Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Crystal structure of barium manganese vanadate BaMnV2O7;Scientific Herald of Uzhhorod University Series Physics;2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3