Building Machine Learning Models for Fraud Detection in Customs Declarations in Senegal

Author:

Seck Djamal Abdoul Nasser1

Affiliation:

1. Faculty of Science and Technology, Cheikh Anta Diop University of Dakar, BP 5005 Dakar-Fann, SENEGAL

Abstract

To improve the customs declaration control system in Senegal, we propose fraud risk prediction models built with machine learning methods such as Neural Networks (MLP), Support Vector Machine (SVM), Random Forest (RF) and eXtreme Gradient Boosting (XGBoost). These models were built from historical customs declaration data and then tested on a part of the data reserved for this purpose to evaluate their prediction performance according to the metrics of accuracy, precision, recall, and F1-Score. The RF model proved to be the more performant model and is followed, in order, by the XGBoost model, and the MLP and SVM models.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3