The Observation of Actors’ Vocal Emotion Exercises with Deep Learning and Spectral Analysis

Author:

Bratan Costin Andrei1,Tocila-Matasel Claudia2,Andrei Alexandra-Georgiana1,Tebeanu Ana Voichita3,Franti Eduard4,Dascalu Monica1,Ionescu Bogdan1,Iana Gheorghe2,Bobeș Gabriela5,Morosanu Bogdan1,Oproiu Ana-Maria6,Iorgulescu Gabriela6

Affiliation:

1. Faculty of Electronics, Telecommunications and Informational Technology, National University of Science and Technology Politehnica, Splaiul Independenței 313, Bucharest 060042, ROMANIA

2. MEDIMA Health, Odăii 42, Otopeni 075100, ROMANIA

3. Departamentul Pentru Pregătirea Personalului Didactic, National University of Science and Technology Politehnica, Splaiul Independenței 313, Bucharest 060042, ROMANIA

4. Romanian Academy Research Institute for Artificial Intelligence, Calea Victoriei 125, Bucharest 010071, ROMANIA

5. OKaua Theater Company and Pink Stil SRL, Bucharest, ROMANIA

6. Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, Bulevardul Eroii Sanitari 8, Bucharest 050474, ROMANIA

Abstract

This paper presents two distinct methods that demonstrate the increased intensity of a specific emotion when the induced emotion is trained daily for 30 days. For this study, four actors participated in a 30-day exercise trial and were recorded each day using high-level audio equipment. The first method supporting our hypothesis is a deep learning approach. A convolutional neural network pre-trained on Mel-frequency cepstral coefficients analyzed the actors' recordings and delivered the intensity of the detected emotion. The CNN tested 3,561 segments of 0.2-second length, and the results showed a higher level of intensity on the final day of training for each participant. The second method is spectral analysis. The spectrograms generated on the first and final days of the experiment showed that the spectral composition on the final day had a wider range of frequencies than on the first day, further supporting our hypothesis.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Reference27 articles.

1. Csikszentmihályi M., FLOW: The Psychology of Optimal Experience. Harper and Row, 1990. ISBN: 978-0-06-016253-5.

2. Nakamura J., Csikszentmihályi M., "Flow Theory and Research". In Snyder CR, Lopez SJ (eds.). Handbook of Positive Psychology. Oxford University Press. pp. 195–206, 20 December 2001. ISBN: 978-0-19-803094-2.

3. Csikszentmihályi M., "The flow experience and its significance for human psychology". Optimal experience: psychological studies of flow in consciousness. Cambridge, UK: Cambridge University Press. pp. 15–35, 1988. ISBN: 978-0-521-43809-4.E.

4. Wrigley W. J., Emmerson S. B., "The experience of the flow state in live music performance". Psychology of Music., 41 (3): 292–305, May 2013. doi:10.1177/0305735611425903. S2CID 144877389.

5. O'Neill S., "Flow Theory and the Development of Musical Performance Skills". Bulletin of the Council for Research in Music Education. 141 (141): 129–134. JSTOR 40318998 – via University of Illinois Press, 1999.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3