The Solar Energy Forecasting by Pearson Correlation using Deep Learning Techniques

Author:

Al-Jaafreh Tamer Mushal1,Al-Odienat Abdullah2

Affiliation:

1. Mutah University, Kark, JORDAN

2. Electrical Engineering Department, Mutah University, Karak, JORDAN

Abstract

Solar energy is one of the most important renewable energy sources (RES) with many advantages as compared to other types of sources. Climate change is gradually becoming a global challenge for the sustainable development of humanity. There will potentially be two key features, for future electricity systems, high penetration or even dominance of renewable energy sources for clean energy e.g., onshore/offshore wind and solar PV. Solar energy forecasting is essential for the energy market. Machine learning and deep learning techniques are commonly used for providing an accurate forecasting of the energy that will be produced. The weather factors are related to each other in terms of influence, a wide range of features that are necessary to consider in the prediction process. In this paper, the effect of some atmospheric factors like Evapotranspiration and soil temperature are investigated using deep learning techniques. Higher accuracy is achieved when new features related to solar irradiation were considered in the forecasting process.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3