The Number of Fillings a 2×2×n prism with 1×1×2 prisms

Author:

Potůček Radovan1

Affiliation:

1. Department of Mathematics and Physics University of Defence Kounicova 65, 662 10 Brno CZECH REPUBLIC

Abstract

This paper is inspired by very interesting YouTube video of Burkard Polster, professor of mathematics at Monash University in Melbourne, Australia, which, among other things, concerned the number of ways to fill a part of the plane with dominoes, i.e. 1×2 rectangles. First we deal with the numbers of fillings the 2×2×n prism with elementary 1×1×2 prisms for n=1,2,3,4,5. Special symbolism and figures showing the filling of the prism are used as well as the concept of matching from graph theory and the corresponding graph diagrams. Then we generalize these specific considerations and derive a general recurrence formula for any n≥3, which expresses the number of fillings of the 2×2×n prism with 1×1×2 elementary prisms, which in a way can be considered as spatial domino cubes, if we do not consider their marking with pairs of numbers from 0 to 6.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Reference10 articles.

1. Mathloger, The ARCTIC CIRCLE THEOREM or Why do physicists play dominoes? 2020. www.youtube.com/watch?v=Yy7Q8IWNfHM

2. Quora, In how many ways can you fit 1 × 1 × 2 sized dominoes into a domino of dimensions 2 × 2 × 𝑁, where 𝑁 is a variable? 2022. https://www.quora.com/In-how-many-wayscan-you-fit-1-X-1-X-2-sized-dominoes-into-adomino-of-dimensions-2-X-2-X-N-where-N-isa-variable

3. Németh, L., Tillings of (2 × 2 × 𝑛)-board with colored cubes and bricks. International Journal of Mathematical Education in Science and Technology. Vol. 51, No. 5, 2019, pp.786-798. https://doi.org/10.1080/0020739X.2019.167692 7. https://arxiv.org/abs/1909.11729

4. Björner, A., Stanley, R. P., A Combinatorial Miscellany. L’Enseignement mathématique, series Enseignement mathématique / Monographie. No. 42. Geneva 2010. ISBN 978- 2-940264-09-4. https://math.mit.edu/ rstan/papers/comb.pdf

5. Tulleken, H., Polynomies: Shapes and Tilings. First published 2018, last modified 2022. 403 pp. https://www.researchgate.net/publication/ 333296614Polyominoes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3