Forecasting of Visitors Arrived in Taiwan for Tourism Supply Chain Demand using Big Data

Author:

Liang Yi-Hui1

Affiliation:

1. Department of Information Management, I-Shou University No.1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City 84001, TAIWAN

Abstract

The fast development of Information and Communication Technology, generate, collect and operate a large amount of data, which is termed big data. The search queries in web search engines can be retrieved by visitors to obtain useful infor-mation for the selected next visiting destinations. Google Trends on Google search engine can evaluate and compare how many times users are searching for specific terms or topics. Otherwise, economic factors, covering income, the rela-tive prices, and relative exchange rate usually influence the international tourist demand. However, there are different conclusions in different settings. Accord-ingly, this work presents the ARIMAX model for modelling and forecasting numbers of international tourists visiting Taiwan from Japan for different pur-poses and provides an analysis of the effects of big data and economic factors. The results can contribute to the decision makers of the tourism industry in Taiwan

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3