WeightedSLIM: A Novel Item-Weights Enriched Baseline Recommendation Model

Author:

Zhang Haiyang1,Zeng Xinyi2,Ganchev Ivan3

Affiliation:

1. Department of Computing, Xi’an Jiaotong, Liverpool University, Suzhou, CHINA

2. College of Artificial Intelligence, North China University of Science and Technology, Tangshan, CHINA

3. University of Plovdiv “Paisii Hilendarski”, Plovdiv, BULGARIA

Abstract

This paper proposes a novel weight-enriched ranking-based baseline model, WeightedSLIM, aiming to provide more accurate top-N recommendations from implicit user feedback. The model utilizes ItemRank to calculate the ranking score of each item, which is then used as an item weight within the Sparse Linear Model (SLIM), while using Bayesian Personalized Ranking (BPR) to optimize the item similarity matrix. Experiments, conducted for performance comparison of the proposed model with existing recommendation models, demonstrate that it can indeed provide better recommendations and can be used as a strong baseline for top-N recommendations.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3