Random Furrowing for a Stochastic Unit Commitment Solution

Author:

Thomas P. C.1,Mathew Shinosh1,Mathew Bobin K1

Affiliation:

1. Dept. of Electrical and Electronics Engg., Amal Jyothi College of Engineering, Kanjirapally. INDIA

Abstract

The Unit Commitment Problem involves the inherent difficulty of obtaining optimal combinatorial power generation schedules over a future short term period. The formulation of the generalized Unit Commitment Schedule formulation involves the specific combination of generation units at several de-rated capacities during each hour of the planning horizon, the load demand profile, load indeterminateness and several other operating constraints. This largely deterministic schedule continues to find favor with several plant operators, keeping in mind the close operating time-periods involved. However, the deterministic nature of the load profile is sought to be phased out by a stochastic pattern that is realistic and mirrors real-life situations, owing to modern trends in Demand side management. This shift is in tune with the ongoing power restructuring activities of electricity power reforms. The stochastic profile is obtained by a suitably tuned 2-parameter Weibull distribution that uses appropriate shape and scale parameters. The resulting band of generated load profiles are used to evaluate net power and penal costs associated with a set of pervasive randomized probability indices. The exact UCS comprises of a specific unit absolute state corresponding to a certain time period within the planning horizon. Subsequently, regression analysis is applied to establish the correlation between the absolute states and the cumulative randomized load demand against the intervals within the planning horizon. This method is analogous to random furrowing of probabilistic demand profile.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3