Pair Programming – Cubic Prediction Model Results for Random Pairs and Individual Junior Programmers

Author:

Ajiboye Mary Adebola1,Abolarin Matthew Sunday2,Ajiboye Johnson Adegbenga3,Usman Abraham Usman4,Misra Sanjay5

Affiliation:

1. Abuja Electricity Distribution Company (AEDC), ICT Department, Niger Regional Office, Minna, NIGERIA

2. Department of Mechanical Engineering, Federal University of Technology, P.M.B 65, Minna, NIGERIA

3. Department of Electrical and Electronics Engineering, Federal University of Technology, P.M.B 65, Minna, NIGERIA

4. Department of Telecommunication Engineering, Federal University of Technology, P.M.B 65, Minna, NIGERIA

5. Department of Applied Data Science, Institute for Energy Technology, Halden, NORWAY

Abstract

Due to the rapidly evolving technology in the dynamic world, there is a growing desire among software clients for swift delivery of high-quality software. Agile software development satisfies this need and has been widely and appropriately accepted by software professionals. The maintainability of such software, however, has a significant impact on its quality. Unfortunately, existing works neglected to consider timely delivery and instead concentrated primarily on the flexibility component of maintainability. This research looked at maintainability as a function of time to rectify codes among Individual Junior and Random pair software developers. Data was acquired from an experiment performed on software developers in the agile environment and analyzed to develop the quality model metrics for maintainability which was used for prediction. One hundred programmers each received a set of agile codes created in the Python programming language, with deliberate bugs ranging from one to ten. The cubic regression model was used for predicting time spent on debugging errors above ten bugs. Results show that the random pair programmers spent an average time of 21.88 min/error while the individual programmers spent a lesser time of 16.57 min/error.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3