Agricultural Grid Connected Photovoltaic System Design and Simulation in Egypt by using PVSYST Software

Author:

Farghally Hanaa M.1,Sweelem Emad A.1,El-Sebah Mohamed I. Abu1,Syam Fathy A.1

Affiliation:

1. Electronics Research Institute, Cairo, Joseph Tito St, Huckstep, El Nozha, Cairo Governorate 4473221, EGYPT

Abstract

Agricultural Photovoltaic Systems are a key technology to achieve sustainable development goals by reducing competition between land for food and electricity. In addition, Agricultural Photovoltaic Systems are at the heart of the link between power generation, crop production and irrigation water conservation. The main ecophysiological constraint on crop production under photovoltaics is the reduction of light. It is difficult to recommend shade tolerance for some plant varieties due to insufficient information on shading conditions for most plants. The use of shading panels (photovoltaic panels) requires more crop-specific research to determine the optimal percentage of panels and their placement that will not reduce agricultural yields. Crop yield variation versus field shading and availability to maximize the system require extensive research. This study aims to develop a standard procedure for designing an agricultural grid-connected photovoltaic power generation system for solar power generation in an agricultural area in Bahteem, Egypt. The technical and annual performance of the grid-connected PV system was simulated using PV Syst software. The paper started with a pre-feasibility study of a grid-connected photovoltaic system using PV Syst. Software with an extensive database of meteorological data, including global daily horizontal solar irradiance, and a database of various renewable energy system components from different manufacturers. In this work, a comprehensive literature review of agricultural solar photovoltaic systems is conducted, with a particular focus on grid-connected systems, followed by a design procedure for grid-connected solar photovoltaic systems. The planned photovoltaic system will generate a total of 400 KWp of electricity. This generated electricity can drive down electricity prices by exporting excess electricity to the national grid. In addition, solar power systems are fuel-efficient and have a low environmental impact.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3