Intelligent Diagnosis Technology of Wind Turbine Drive System based on Neural Network

Author:

Yang Wei1,Chai Yi2,Zheng Jie3,Liu Jie3

Affiliation:

1. The College of Automation, Chongqing University, Chongqing 400044, China

2. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing, University, Chongqing 400044, China

3. China Shipbuilding Industry Corporation Haizhuang Windpower Equipment CO., Ltd., Chongqing 401122, China

Abstract

The seriousness of air pollution appears to be the importance of wind energy as a non-polluting energy source. Today, the use of wind power has become a trend for new countries to develop new energy sources. Wind turbines are the key equipment for converting wind energy into electrical energy, the quality of the state directly affects the efficiency of wind power generation. Therefore, how to effectively diagnose the wind turbine drive system is the guarantee of wind power generation. This paper establishes a fault diagnosis method for wind turbine drive based on vibration characteristics, by wavelet packet decomposition of vibration signals. The feature extraction is carried out and back propagation neural network is used for classification research. Finally, the simulation results show that the recognition rate is over 90%, which verify effectiveness of the proposed method.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Electrical and Electronic Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3