Efficient Multi-objective Optimizers by Meta-heuristics for Power System Control

Author:

Eddine Ghouraf Djamel1,Abdellatif Naceri2

Affiliation:

1. SCAMRE Laboratory, BP1523 EL M’naour, Oran 31000, ALGERIA

2. IRECOM Laboratory, BP 98 22000 ALGERIA

Abstract

This paper proposes the Meta-heuristics approaches using genetic algorithms (GA) and particle swarm optimization (PSO) for tuning power system stabilizer PSS parameters. In this work we have proposed a multi-objective function based on two objectives: first maximize the stability margin by increasing the damping factors and second minimize the eigenvalues real parts. For the effectiveness function proposed check, we compared it with mono-objective function. The simulation results, by comparative study between genetic algorithms and particle swarm optimizations techniques via multi objective and mono objective functions proved the efficiency of the PSS adapted by multi-objective function based genetic algorithms in comparison with particle swarm optimization, it’s enhanced stability of power system works under different operating modes and different network configurations. The simulation results obtained under developed graphical user interface (GUI).

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3