Data Level Approach for Multiclass Imbalance Financial Data

Author:

Ruzgar Nursel Selver1,Chua Clare1

Affiliation:

1. Ted Rogers School of Management, Ryerson University, Toronto, CANADA

Abstract

In the real world, the class imbalance problem is a common issue in which classifier gives more importance to the majority class whereas less importance to the minority class. In class imbalance, imbalance metrics would not be suitable to evaluate the performance of classifiers with error rate or predictive accuracy. One type of imbalance data -handling method is resampling. In this paper, three resampling methods, oversampling, under-sampling and hybrid, methods are used with different approaches for in class imbalance of two different financial data to see the impact of class imbalance ratios on performance measures of nine different classification algorithms. Aiming to achieve better change classification performance, the performance of the classification algorithms, Bayes Net, Navie Bayes, J48, Random Forest Meta-Attribute Selected Classifier, MetaClassification via Regression, Meta-Logitboost, Logistic Regression, and Decision Tree, are measured on two Canadian Banks multiclass imbalance data with the performance measures, Precision, Recall, ROC Area and Kappa Statistic, by using WEKA software. The outcome of these performance measurements compared with three different resampling methods. The results provide us with a clear picture on the overall impact of class imbalance on the classification dataset and they indicate that proposed resampling methods can also be used for in class imbalance problems

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Risks of Adopting Automated AIS Applications on the Quality of Internal Auditing;WSEAS TRANSACTIONS ON BUSINESS AND ECONOMICS;2021-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3