Machine-Learning Approach for Prognosis of Oscillating Water Column Wave Generators

Author:

Garrido Izaskun1,Lecube Jon1,Mzoughi Fares1,Aboutalebi Payam1,Ahmad Irfan1,Cayuela Salvador1,Garrido Aitor1

Affiliation:

1. Automatic Control Group, ACG, Department of Automatic Control and Systems Engineering, University of the Basque Country—UPV/EHU, Bilbao, SPAIN

Abstract

Wave excitations cause structural vibrations on the Oscillating Water Columns (OWC) lowering the power generated and reducing the life expectancy. The problem of generator deterioration has been considered for the Mutriku MOWC plant and a machine learning-based approach for prognosis and fault characterization has been proposed. In particular, the use of k-Nearest Neighbor (kNN) models for predicting the time to failure of OWC generators has been proposed. The analysis is based on data collected from sensors that measure various operational parameters of the turbines. The results demonstrate that the proposed kNN model is an excellent choice for reducing maintenance costs by enabling maintenance scheduling months in advance. The model's high accuracy in predicting generator failures allows for timely and cost-effective maintenance, preventing costly breakdowns and improving turbine efficiency. The results highlight the potential of machine learning-based approaches for addressing maintenance challenges in the energy sector and underscore the importance of proactive maintenance strategies in reducing operational costs and maximizing energy production.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3