Prediction of the Growth of Renewable Energies in the European Union using Time Series Analysis

Author:

Kraenzle Holger1,Rampp Maximilian1,Werner Daniel1,Seitz Jürgen1,Sharma Neha2

Affiliation:

1. Duale Hochschule Baden-Württemberg, Wirtschaftsinformatik, Heidenheim 89518, GERMANY

2. AI.Cloud, Tata Consultancy Services, INDIA

Abstract

The whole world is affected by climate change and renewable energy plays an important role in combating climate change. To add to the existing precarious situation, the current political events such as the war in Ukraine mean that fossil raw materials such as oil and gas are becoming more and more expensive in the raw material markets. This paper presents the current state of renewable energies in Germany and Europe. Using data from the past 56 years, the predictive models ARIMA and Prophet are used to find out if the conversion to renewable energies and the elimination of fossil raw materials in the energy sector can be achieved in the EU. The results are compared with the target of the EU in 2030 and a long-term outlook until 2050 will be provided.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Computer Science

Reference25 articles.

1. Sharma N., Ghosh S., Saha M. (2021). Open Data for Sustainable Community. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-33-4312- 2_10.

2. Sharma, N., De, P.K. (2023). Towards NetZero Targets: Usage of Data Science for Long-Term Sustainability Pathways. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-5244-9.

3. K. U. R. Khan, G. H. Bisen, P. K. De and N. Sharma, "Multivariate Regression Analysis of Investments by Banks in Fossil Fuel Sectors to Predict Climate Change Consequences," 2021 IEEE 2nd International Conference on Technology, Engineering, Management for Societal impact using Marketing, Entrepreneurship and Talent (TEMSMET), 2021, pp. 1-6, doi: 10.1109/TEMSMET53515.2021.9768677.

4. Abhay Despande, Tanmay Belsare, Neha Sharma, Prithwis De, “Univariate Time Series Forecasting of Indian Agriculture Emissions”, In: Singh, M., Tyagi, V., Gupta, P.K., Flusser, J., Ören, T. (eds) Advances in Computing and Data Sciences. ICACDS 2022. Communications in Computer and Information Science, vol.1614. Springer, Cham. https://doi.org/10.1007/978-3-031- 12641-3_28.

5. Chadha, A.S., Shinde, Y., Sharma, N., De, P.K. (2023). Predicting CO2 Emissions by Vehicles Using Machine Learning. In: Goswami, S., Barara, I.S., Goje, A., Mohan, C., Bruckstein, A.M. (eds) Data Management, Analytics and Innovation. ICDMAI 2022. Lecture Notes on Data Engineering and Communications Technologies, vol.137. Springer, Singapore. https://doi.org/10.1007/978-981-19-2600- 6_14.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3