Affiliation:
1. Research Center for Advertising and Media Economics, Wuhan Technology and Business University, Wuhan 430065, CHINA
Abstract
In the big data environment, the visualization technique has been increasingly adopted to mine the data on library and information (L&I), with the diversification of data sources and the growth of data volume. However, there are several defects with the research on information association of L&I visualization network: the lack of optimization of network layout algorithms, and the absence of L&I information fusion and comparison in multiple disciplines, in the big data environment. To overcome these defects, this paper explores the visualization of L&I from the perspective of big data analysis and fusion. Firstly, the authors analyzed the topology of the L&I visualization network, and calculated the metrics for the construction of L&I visualization topology map. Next, the importance of meta-paths of the L&I visualization network was calculated. Finally, a complex big data L&I visualization network was established, and the associations between information nodes were analyzed in details. Experimental results verify the effectiveness of the proposed algorithm
Publisher
World Scientific and Engineering Academy and Society (WSEAS)