Real-time Implementation of a Single Phase Asynchronous Motor Drive, Feeding within an Open Energy Source

Author:

Ebrahim Essamudin A.1,Sweelem Emad A.2

Affiliation:

1. Power Electronics and Energy Conversion Department Electronics Research Institute, Joseph Tito St., Huckstep, Qism El-Nozha, Cairo Governorate, 12662 Cairo EGYPT

2. Photo-voltaic Department, Electronics Research Institute, Joseph Tito St., Huckstep, Qism El-Nozha, Cairo Governorate, 12662 Cairo EGYPT

Abstract

A modified nanogrid (MnG) is a very small scalable grid with a low power single-input multi-output (SIMO) inverter. This inverter simultaneously produces both AC and DC currents, such as the switched boost inverter (SBI) and the z-source inverter. These inverters are suitable for low-power loads such as home appliances that use fractional horse-power motors as single-phase asynchronous drives. Thus, this article proposes a single-phase induction motor powered from a modified nanogrid that involves multiple types of inverters such as a SBI and a ZS inverter. The modified nanogrid is mainly dependent on photovoltaic (PV) as a renewable resource. Thus, this manuscript involves a full design for this proposed grid with its maximum power point tracking (MPPT) and the mathematical models for motor drive with both a SBI and a ZSI. Time-varying speed trajectories are proposed to test the robustness of the proposed drives relative to the fluctuation of PV-parameters like its irradiance. Test results are obtained using the Matlab/ Simulink software package and a comparison with the traditional sinusoidal pulse width modulation (SPWM) inverter as a single-input single-output inverter (SISOI). The results indicate that the proposed single-input multi-output inverters are suitable for driving these motors through start-up and operation, although the DC-link voltage is minimized. Furthermore, the proposed system is experimentally implemented with OPAL RT-4510v real-time hardware in the loop (HIL), rapid control prototyping, and OP-8660 HIL controller and data acquisition platform.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Electrical and Electronic Engineering,Energy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3