Implementation of UPQC Alleviating Power Quality Issues in a Hybrid Grid Integrated System

Author:

Illa Vamsi Ram1,Senapati Rudranarayan1,Swain Sarat Chandra1

Affiliation:

1. School of Electrical Engineering, KIIT University Patia, Bhubaneswar, Odisha INDIA

Abstract

The advances in the field of power systems, distribution utilities ordinance the associated non-linear advance loads compliance with the stern power quality (PQ) enhances the reliableness of the delivery system to provide demands of censorious loads and subtle automation systems. Hurdles for sustaining quality power are linked with the continuation of elemental VAR power necessities of loads; voltage dips and swells at the point of common coupling (PCC) due to sudden switching of large industrial loads as well as VAR power indemnifying capacitors and harmonic distortions due to voltage and/or current along with non-linear loads. The harmonic distortions are pertained to be the major drawback the root cause of the PQ issues also the fluctuating pattern by loads causes degradation of voltage waveform which has been presented with variable loads. Hence, custom power device (CPD) materialized as Unified Power Quality Conditioner (UPQC) settles the issue. Intention of the work is to bring spontaneity in both the voltage and current waveform with the Sinusoidal current control strategy (SCCS), a time dominion strategy founded over instantaneous pq-theory executed with MATLAB 2016a. The results are well analyzed with proper explanation for selection of the said strategy for the UPQC. As an elementary and inherent strategy, it has titanic prospects further to be applied under photo-voltaic environment associated with a proton exchange membrane fuel cell (FC) in a hybrid grid integrated (HGI) system.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Electrical and Electronic Engineering,Energy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing the Performance of Power Compensating Device (UPQC) with Sinusoidal Current Control Strategy;2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC);2022-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3