Affiliation:
1. Mechanical Engineering Department, Faculty of Engineering Technology Al-Balqa Applied University, Amman, Marka,11134, JORDAN
Abstract
The temperature of silicon Poly-Crystal photovoltaic (PV) solar panels has a significant impact on their efficiency emphasizing the necessity of cooling approach to be used. The current study looked at the impact of adopting a unique forced convictive air-to-air heat exchanger as a cooling approach to boost the efficiency of PV solar panels, as efficiency of silicon Poly-Crystal PV solar panels would decrease as its temperature increased. The research was carried out experimentally with both an uncooled and cooled PV system. A unique cooling system for PV panels was designed and experimentally investigated in Amman, Jordan included a heat exchanger connected to a blower that drove ambient air over the back-panel surface and a chimney to draw the cooled air outside. This cooling system would improve the PV panel's efficiency. It was found that by directing cooled air over the bottom surface of the PV module at an ideal rate of 0.01020 m3/s, the temperature of the PV module could be reduced from an average of 40 °C (without cooling) to 34 °C. As a result, the efficiency and output power of PV modules increased by roughly 2 % and 12.8 %, respectively.
Publisher
World Scientific and Engineering Academy and Society (WSEAS)
Subject
Electrical and Electronic Engineering,Energy (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献