A Proposed Strategy to Solve the ‎Intermittency Problem in Renewable Energy Systems ‎Using A Hybrid Energy ‎Storage System

Author:

Boghdady T. A.1,Alajmi S. N.1,Darwish W. M. K.1,Hassan M. A. Mostafa1,Seif A. Monem1

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering, Cairo University, Giza, Egypt.

Abstract

Renewable energy resources are a favorable solution for the coming energy. So, a great interest has been paid in the last decades for developing and utilizing renewable energy resources as wind energy. As it has a large energy contents and, particularize with the availability, but the major problems of it are represented in unmatched with load demand because the intermittency and fluctuation of nature conditions. Many studies focused on the new strategy of using Battery Storage System (BSS), and solving some problems that affect the DC bus voltage and the BSS by using Electrochemical Double Layer Capacitor (EDLC). Their capability is to store energy to realize the objective of time shifting of surplus energy with a high efficiency. The article main objective is to model, simulate, design, and study the performance of a Stand-Alone Wind Energy System with Hybrid Energy Storage (SAWS-HES). Thus, a complete model of the proposed system is implemented including a detailed modeling procedure of the HESS components. In addition to the main contribution, a study of the performance of EDLC only as a storage device that has fast response device integrated to the suggested system then it hybridized with the BSS. The HESS has the capability to compensate the DC bus voltage in the transient conditions and gives good stability for the system. The SAWS-HES utilizes one main renewable energy resource as wind turbine and overall model is employed under MATLAB/Simulink including a developed simple logic controller. The SAWS-HES simulation results presented a promising performance and have a satisfied performance in meeting the end load demands at different operation conditions. This ensures the SAWS-HES reliability and the effectiveness with HES and the controller in stand-alone operation formulating an excellent solution for the renewable energy systems

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Electrical and Electronic Engineering,Energy (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Extensive Assessment of the Energy Management and Design of Battery Energy Storage in Renewable Energy Systems;WSEAS TRANSACTIONS ON POWER SYSTEMS;2024-05-09

2. Design and Management of Hybrid Renewable Energy System using RETscreen Software: A Case Study;International Journal of Electrical Engineering and Computer Science;2023-10-16

3. Design and Development of a Multifunction Device for Lead Acid Batteries;2023 27th International Conference on Circuits, Systems, Communications and Computers (CSCC);2023-07-19

4. Storage Efficiency Optimization in Capacitor-based Energy Harvesting Systems;2023 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO);2023-04

5. A Survey of Recent Advances in the Smart Management of Microgrids and Networked Microgrids;Energies;2022-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3