Demand Response Management Algorithm for Distributed Multi-Utility Environment in Smart Grid

Author:

Priya L.1,Gomathi V.1

Affiliation:

1. Department of EEE College of Engineering Guindy, Anna University, Chennai, INDIA

Abstract

Effective usage of Information and Communication Technologies (ICT) has started with a paradigm shift in the energy management and functioning of the conventional power grid. It also aids in the maintenance of the complete information about consumer usage pattern, power storage, supply and regulation. Blending of information and communication technologies with energy management creates a smart grid environment which makes it move to the next horizon. The smart grid environment, uplifts renewable energy sources and brings out novel strategies in the energy market. The new functioning of the energy market attracts more utility companies for decentralized power generation and optimizes the power price for the consumer. The consumer plays an active role in the demand response modelling to maximize the welfare of the utility and to obtain the optimized price for their demand. In this paper, a novel demand response management scheme is proposed for multi-utility environment. The utility companies function in a peer to peer manner to communicate effectively and to select a specific utility from a set of utilities for the power supply. The selection of single utility is based on a non-cooperative game theory algorithm where the demand and generated power should be balanced to maximize the welfare of the utility and the residential consumers. The power price can be updated in an equal interval to allow all the utilities to participate in the Distributed Multi-Utility Demand Response Management (DMDRM) system. The simulated results justify that the distributed noncooperative game theory algorithm certainly maximizes the welfare of the utility companies and residential consumers.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Electrical and Electronic Engineering,Energy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3