Reduction of Input Torque and Joint Reactions in High-Speed Mechanical Systems with Reciprocating Motion

Author:

Arakelian Vigen1

Affiliation:

1. LS2N-ECN UMR 6004, 1 rue de la Noë, BP 92101, F-44321 Nantes, FRANCE

Abstract

In high-speed machinery, the variable inertia forces generated by reciprocating masses often introduce undesirable effects, such as a significant increase in the required input torque and joint forces. This paper addresses the challenge of reducing input torque and joint reaction forces in such mechanisms by employing two compression linear springs positioned between the slider and the frame. These springs counterbalance the slider's inertia force, thereby diminishing both the input torque and joint reactions. It is important to note that the elastic forces exerted by these springs remain internal to the mechanical system, preserving the balance of shaking forces and moments of the mechanism on the frame. The analytical framework developed in this study focuses on minimizing the root mean square and maximum values of the inertia force effects. A significant scientific achievement is attaining a given goal through an analytical solution. Notably, this is the first instance where this problem has been formulated and solved using explicit expressions. The effectiveness of the proposed technique is also demonstrated through CAD simulations, showing a substantial reduction in input torque and joint reactions.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3