Effect of Earthquake-Induced Structural Pounding on the Floor Accelerations and Floor Response Spectra of Adjacent Building Structures

Author:

Folhento Pedro1,De Barros Rui Carneiro2,Braz-César Manuel3

Affiliation:

1. CONSTRUCT, Faculdade de Engenharia da Universidade do Porto, FEUP, Rua Dr. Roberto Frias, s/n 4200-465, Porto, PORTUGAL

2. CONSTRUCT, Faculdade de Engenharia da Universidade do Porto, FEUP, Department of Civil Engineering – Structural Division, Rua Dr. Roberto Frias, s/n 4200-465, Porto, PORTUGAL

3. CONSTRUCT, Instituto Politécnico de Bragança, ESTiG, Campus de Santa Apolónia - 5300-253, Bragança, PORTUGAL

Abstract

The influence of earthquake-induced structural pounding among buildings is paramount in the seismic analysis and design of structures. The recognition of such a phenomenon has been growing in the last decades. The search for ways to understand and mitigate the consequences of these structural collisions in building structures is the primary goal of the investigation of earthquake-induced building pounding. This phenomenon is known for increasing the floor accelerations, mainly where pounding occurs, implying significant local damage. These collisions cause short-duration acceleration pulses that may compromise the building structure and the non-structural elements within the building’s stories. Non-structural elements supported by the structure’s floors under earthquake-induced pounding instances may present a risk to human lives and/or human activity. Hence, the influence of earthquake-induced pounding in the floor response spectra of two adjacent reinforced concrete structures with inelastic behavior is assessed by varying the number of stories and their separation distance. Pounding greatly influenced the floor acceleration spectra, increasing the spread of accelerations over a broader period range, particularly exciting low to moderate periods of vibration.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3