Event-Based Clustering with Energy Data

Author:

Greer Kieran1,Bi Yaxin1

Affiliation:

1. School of Computing, Faculty of Computing, Engineering and the Built Environment, Ulster University, UK.

Abstract

This paper describes a stochastic clustering architecture that can be used for making predictions over energy data. The machine learning approach uses some new algorithms of hyper and frequency grids. The design is discrete, localised optimisations based on similarity, followed by a global aggregating layer. The global layer is entropy-based, allowing for a comparison with the recent distributed random neural network designs, for example. The topic relates to the IDEAS Smart Home Energy Project, where a client-side Artificial Intelligence component can predict energy consumption for appliances. The proposed data model is essentially a look-up table of the key energy bands that each appliance would use. Each band represents a level of consumption by the appliance, or the amount used in a time unit and the table can replace more complicated methods, usually constructed from probability theory, for example. Results show that the table can accurately disaggregate a single source to a set of appliances, because each appliance has quite a unique energy footprint. As part of predicting energy consumption, the model could possibly reduce costs by 50%, and more than that if proposed appliance schedules are also included. A second case study considers wind power patterns, where the grid optimises over the dataset columns in a self-similar way to the rows, allowing for some level of feature analysis.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3