Tool Wear Condition Monitoring Using Emitted Sound Signals By Simple Machine Learning Technique

Author:

Perumal C. Logesh ,1,Bhadrinathan S. B. ,1,Samraj Andrews2

Affiliation:

1. Department of Artificial Intelligence and Data Science, Mahendra Engineering College, Namakkal,Tamil Nadu, INDIA

2. Department of Computer Science and Engineering, Mahendra Engineering College Namakkal,Tamil Nadu, INDIA

Abstract

As a continuous enhancement to the tool wear monitoring using non-disturbing method of sound wave analysis, a simple machine learning technique enhances the prediction to better levels and reduces the procedures. A simple linear regression Algorithm was used to train and predict the trends of various degrees of tool wear to distinguish them from each other. The results based on this simple linear regression were successful in showing the difference of sound patterns and are reported.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3