Tool Wear Condition Monitoring Using Emitted Sound Signals By Simple Machine Learning Technique
Author:
Affiliation:
1. Department of Artificial Intelligence and Data Science, Mahendra Engineering College, Namakkal,Tamil Nadu, INDIA
2. Department of Computer Science and Engineering, Mahendra Engineering College Namakkal,Tamil Nadu, INDIA
Abstract
Publisher
World Scientific and Engineering Academy and Society (WSEAS)
Reference13 articles.
1. E. Dimla, and S. Dimla , “Sensor signals for tool-wear monitoring in metal cutting operations-a review of methods”, International Journal of Machine Tools & Manufacture, vol. 40, pp. 1073- 1098, 2000.
2. R. G. Silva, R. L. Reuben, K. J. Baker, and S. J. Wilcox, “Tool wear monitoring of turning operations by neural network and expert systemClassification of a feature set generated from multiple sensors,” Mechanical Systems and Signal Processing, vol. 12, pp. 319–332, November 1998.
3. F. J. Alonso and D. R. Salgado, “Application of singular spectrum analysis to tool wear detection using sound signals,” Proc. IME, Part B: Journal of Engineering Manufacture, vol. 219, no. 9, pp. 703-710, 2005
4. Sadettin, O., S. Orhan, A. Osman Er, N. Camus-cu, and E. Aslan, “Tool wear evaluation by vibration analysis during end milling of AISI D3 cold work tool steel with 35 HRC hardness,” NDT&E International, vol. 40, pp. 121–126, 2007.
5. M. Chyuan Lu, E. Kannatey-Asibu, “Analysis of Sound Signal Generation Due to Flank Wear in Turning,” Journal of Manufacturing Science and Engineering, vol. 124, no. 4, doi:10.1115/1.1511177, pp. 799-808 , November 2002.
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3