Analyzing Customer Satisfaction using Support Vector Machine and Naive Bayes Utilizing Filipino Text

Author:

Campit Joseph B.1

Affiliation:

1. College of Arts, Sciences, and Technology, Pangasinan State University - Bayambang Campus, Zone VI, Bayambang, Pangasinan, PHILIPPINES

Abstract

The study aimed to compare the classification performance of Support Vector Machine (SVM) and Naive Bayes (NB) machine learning models for estimating customer satisfaction utilizing Filipino text. Specifically, it analyzed the characteristics of the customer satisfaction data. It also examined the impact of different model configurations, including n-gram, stop words, and stemming, on the classification performance of the two models. The research employed qualitative and quantitative methods, utilizing text analytics and sentiment analysis to extract and analyze valuable information from unstructured responses from a satisfaction survey of the University President’s leadership performance conducted among PSU personnel and students. The dataset comprised 56,000 Filipino and English-word responses, manually annotated and randomly split into training and testing datasets. The study followed a general framework encompassing data pre-processing, modeling, and model comparison. To validate the classifiers’ classification performance, a 10-fold cross-validation approach was employed. The findings revealed that most personnel and students expressed positive sentiment toward the University President’s leadership performance. SVM outperformed the NB model across all different model configurations. With both stop word removal and stemming, the SVM trigram model achieved the highest classification performance for estimating customer satisfaction, using 75% of the data for training and 25% for testing. The proposed model holds the potential for estimating customer satisfaction using other unstructured customer satisfaction data utilizing Filipino text.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Energy,General Environmental Science,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3