On Modelling the Structural Quasiness of Complex Systems

Author:

Minati Gianfranco1

Affiliation:

1. Italian Systems Society Via Pellegrino Rossi, 42 ITALY

Abstract

Complex systems are usually represented by invariant models which at most admit only parametric variations. This approach assumes invariant idealized simplifications to model these systems. This standard approach is considered omitting crucial features of phenomenological interaction mechanisms related to processes of emergence of such systems. The quasiness of the structural dynamics that generate emergence of complex systems is considered as the main feature. Generation achieved through prevalently coherent sequences and combinations of interactions. Quasiness (dynamics of loss and recovery, equivalences, inhomogeneity, multiplicity, non-regularity, and partiality) represents the incompleteness of the interaction mechanisms, incompleteness necessary even if not sufficient for the establishment of processes of emergence. The emergence is extinguished by completeness. Complex systems possess local coherences corresponding to the phenomenological complexity. While quasi-systems are not necessarily complex systems, complex systems are considered quasi-systems, being not always systems, not always the same system, and not only systems. It is addressed the problem of representing the quasiness of coherence (quasicoherence), such as the ability to recover and tolerate temporary levels of incoherence. The main results of the study focus on research approaches to model quasicoherence through the changing of rules in models of emergence. It is presented a version of standard analytical approaches compatible with quasiness of systemic emergence and related mathematical issues. The same approach is considered for networks, artificial neural networks, and it is introduced the concept of quasification for fixed models. Finally, it is considered that suitable representations of structural dynamics and its quasiness are needed to model, simulate, and adopt effective interventions on emergence of complex systems.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Artificial Intelligence,General Mathematics,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiple Systems;Multiple Systems;2024

2. Systems, Complex Systems, and Intelligence: an Educational Overview;WSEAS TRANSACTIONS ON ADVANCES in ENGINEERING EDUCATION;2022-04-21

3. Interactions and Interaction Mechanisms as Generators of Complex Systems;PROOF;2022-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3