Detection of Abnormal Activity to Alert the Nearby Persons via M-DNN Based Surveillance System

Author:

Patil Shankargoud1,Prabhushetty Kappargaon S.2

Affiliation:

1. Department of Electronics and Communication Engineering, S. G. Balekundri Institute of Technology, Belagavi Shivabasavnagar, Belagavi, Karnataka, INDIA

2. Department of Electronics and Communication Engineering, Veerappa Nisty Engineering College, Hasanapur Shorapur, Yadgir, Karnataka, INDIA

Abstract

In today's environment, video surveillance is critical. When artificial intelligence, machine learning, and deep learning were introduced into the system, the technology had progressed much too far. Different methods are in place using the above combinations to help distinguish various wary activities from the live tracking of footages. Human behavior is the most unpredictable, and determining whether it is suspicious or normal is quite tough. In a theoretical setting, a deep learning approach is utilized to detect suspicious or normal behavior and sends an alarm to the nearby people if suspicious activity is predicted. In this paper, data fusion technique is used for feature extraction which gives an accurate outcome. Moreover, the classes are classified by the well effective machine learning approach of modified deep neural network (M-DNN), that predicts the classes very well. The proposed method gains 95% accuracy, as well the advanced system is contrast with previous methods like artificial neural network (ANN), random forest (RF) and support vector machine (SVM). This approach is well fitted for dynamic and static conditions.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Artificial Intelligence,General Mathematics,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligence Surveillance System for Bank Security Against Robbery;Lecture Notes in Networks and Systems;2024

2. A Swarm of Solutions: Tunicate-Inspired Adaptive Equalization for Distortion-Free Digital Communication;2023 IEEE North Karnataka Subsection Flagship International Conference (NKCon);2023-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3