A New Biomedical Image Denoising Method Using an Adaptive Multi-resolution Technique

Author:

Satapathy Lalit Mohan1,Das Pranati2

Affiliation:

1. Department of EEE, SOA Deemed to be University, Bhubaneswar, INDIA

2. Department of EE, IGIT Sarang, Odisha, INDIA

Abstract

In the world of digital image processing, image denoising plays a vital role, where the primary objective was to distinguish between a clean and a noisy image. However, it was not a simple task. As a consequence of everyone's understanding of the practical challenge, a variety of methods have been presented during the last few years. Of those, wavelet transformer-based approaches were the most common. But wavelet-based methods have their own limitations in image processing applications like shift sensitivity, poor directionality, and lack of phase information, and they also face difficulties in defining the threshold parameters. As a result, this study provides an image de-noising approach based on Bi-dimensional Empirical Mode Decomposition (BEMD). This project's main purpose is to disintegrate noisy images based on their frequency and construct a hybrid algorithm that uses existing de-noising techniques. This approach decomposes the noisy picture into numerous IMFs with residue, which were subsequently filtered independently based on their specific properties. To quantify the success of the proposed technique, a comprehensive analysis of the experimental results of the benchmark test images was conducted using several performance measurement matrices. The reconstructed image was found to be more accurate and pleasant to the eye, outperforming state-of-the-art denoising approaches in terms of PSNR, MSE, and SSIM.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Artificial Intelligence,General Mathematics,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3