Affiliation:
1. Laboratory of Computer Science and Interdisciplinary Physics (L.I.P.I), Normal Superior School, Sidi Mohamed Ben Abdellah University, B.P 5206 Bensouda, Fez, MOROCCO
Abstract
The present paper introduces the design and simulation of an op-amp-based PID-controlled DC-DC buck converter to regulate a DC voltage of 12 V to 5 V and support load currents ranging from 1 A to 5 A for automotive applications using LTspice software. The converter operates at a switching frequency of 550 kHz, delivering a regulated output voltage of 5 V for load currents ranging from 1 A to 5 A, with a maximum output voltage ripple of 47.56 mV. The proposed buck converter settles to its regulated value within 943.4 µs at a load current of 1 A, with a peak efficiency of 92.83%. The simulation results of the proposed buck converter response to load current fluctuations show that the buck converter settles to its regulated value in 83.36 µs during a load current change from 1 A to 5 A with an undershoot of 92.62 mV. Conversely, during a load change from 5 A to 1 A, the proposed buck converter recovers from an overshoot of 52.04 mV within 46.32 µs.
Publisher
World Scientific and Engineering Academy and Society (WSEAS)