Analysis of the Gains Tuning Problem in a Backstepping Controller Applied to an Electrohydraulic Drive

Author:

Mintsa Honorine Angue1,Eny Geremino Ella2,Senouveau Nzamba3,Nzue Rolland Michel Assoumou1

Affiliation:

1. Department of Mechanical Engineering, Polytechnic School of Masuku, University of Sciences and Technologies of Masuku, Franceville, REPUBLIC OF GABON

2. Department of Physics, Faculty of Sciences, University of Sciences and Technologies of Masuku, Franceville, REPUBLIC OF GABON

3. Department of Electrical Engineering, Polytechnic School of Masuku, University of Sciences and Technologies of Masuku, Franceville, REPUBLIC OF GABON

Abstract

This paper highlights the problem of tuning the gains of a non-adaptive backstepping controller in an electrohydraulic servo system. While the other non-adaptive controllers in the literature have precise gains tuning methods, the non-self-tuning backstepping controller has no rigorous gain tuning method. The proposed study aims to analyze the contribution of each backstepping controller gain in the closed-loop performance. Our final goal is to establish a rigorous gains-tuning method for the non-adaptive backstepping controller. The study starts with the development of three-stage gains backstepping controller using a non-conventional time derivative Lyapunov function. This particular Lyapunov function makes it possible to analyze the response of the system when all the controller gains are cancelled. Then, we analyze the effect of each gain by cancelling out the values of the others. The first simulation results show that the convergence of the tracking error to zero is not maintained when all gains are set to 0 despite the presence of a negative definite of the Lyapunov function time derivative. In this case, the equilibrium point is not the expected one as time goes to infinity. The second set of results indicates that adjusting the gain related to the feedback of the actual output only ensures the asymptotic convergence of the tracking error to zero as time goes to infinity. However, developing a heuristic tuning of the three controller gains like Ziegler Nichols tuning remains a challenge.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Artificial Intelligence,General Mathematics,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thoughts on the Design of a Servo Electro-Hydraulic African Pestle;2023 International Conference on Electrical, Computer and Energy Technologies (ICECET);2023-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3