Evaluation of the Performance for Popular Three Classifiers on Spam Email without using FS methods

Author:

AL-Rawashdeh Ghada1,Mamat Rabiei Bin1,Rawashdeh Jawad Hammad2

Affiliation:

1. Ocean Engineering Technology and Informatics Dept, Universiti Malaysia Terengganu, Malaysia

2. Computing and Informatics Dept, Saudi Electronic University, Saudi Arabia

Abstract

Email is one of the most economical and fast communication means in recent years; however, there has been a high increase in the rate of spam emails in recent times due to the increased number of email users. Emails are mainly classified into spam and non-spam categories using data mining classification techniques. This paper provides a description and comparative for the evaluation of effective classifiers using three algorithms - namely k-nearest neighbor, Naive Bayesian, and support vector machine. Seven spam email datasets were used to conducted experiment in the MATLAB environment without using any feature selection method. The simulation results showed SVM classifier to achieve a better classification accuracy compared to the K-NN and NB.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Artificial Intelligence,General Mathematics,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3