The Use of Statistic Complexity for Security and Performance Analysis in Autonomic Component Ensembles

Author:

Prangishvili Archil1,Rodonaia Irakly1,Shonia Otar1,Bakhtadze Tengiz1

Affiliation:

1. Faculty of Informatics Georgian Technical University 77 Kostava Str.,Tbilisi GEORGIA

Abstract

The paper proposes a new technique for detecting malware threats in autonomic component ensembles. The technique is based on the statistic complexity metrics, which relate objects to random variables and (unlike other complexity measures considering objects as individual symbol strings) are ensemble based. This transforms the classic problem of assessing the complexity of an object into the realm of statistics. The proposed technique requires implementation of the process X (which generates ‘healthy’ flows containing no malware threats) and objects generated by the actual (possible infected) process Y. The component flows files are used as objects of the processes X and Y. The result of the proposed procedure gives us the distribution of probabilities of malware infection among autonomic components. The possibility to use the results obtained to perform quantitative probabilistic verification and analysis of ASEs using the probabilistic model checking tool PRISM is demonstrated.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Reference11 articles.

1. A. Prangishvili, O. Shonia, I. Rodonaia, V.Rodonaia. Formal security modeling in autonomic cloud computing environment . WSEAS / NAUN International Conferences, Valencia, Spain, 2013

2. A.Prangishvili, O.Shonia, I.Rodonaia, M. Mousa. Formal verification in autonomiccomponent ensembles, WSEAS / NAUN International Conferences, Salerno, Italy, 2014

3. F. Emmert-Streib. Statistic Complexity: Combining Kolmogorov Complexity with an Ensemble Approach, Queen’s University, Belfast, United Kingdom, 2010

4. Cilibrasi R, Vitanyi P. Clustering by compression. IEEE Transactions Information Theory 51: 1523–1545. 2005

5. ASCENS, P.: http://www.ascens-ist.eu/ (2010)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3