Stochastic Model of Liquid Fuel Spraying at High Pressures and High Reynolds Numbers

Author:

A. S., Askarova1,S. A., Bolegenova1,V. Yu., Maximov1,M. T. Beketayeva1

Affiliation:

1. Physics and Technology Faculty Al-Farabi Kazakh national university Almaty, Al-Farabi av., 71 REPUBLIC OF KAZAKHSTAN

Abstract

The paper describes the main features of the combustion of liquid fuel injections, developed a stochastic model for the atomization of liquid fuels injected into the combustion chamber at high pressures and high Reynolds numbers. A mathematical model for the combustion of liquid injections at high pressures and high Reynolds numbers is presented, which includes: the equations of continuity, motion, internal energy, the K-ε model of turbulence, a system of equations describing the processes of evaporation, mixing, rupture and coalescence of liquid fuel droplets. A stochastic model of atomization of liquid fuels injected into a combustion chamber at high pressures and high Reynolds numbers has been developed. On the basis of the proposed model, computational experiments were carried out to study the combustion of liquid fuel depending on the injected mass in the combustion chamber under given initial conditions in full. When studying the effect of the mass of liquid fuel on the processes of ignition and combustion at high pressures and high Reynolds numbers, the mass values for octane 6 mg and for dodecane 7 mg were taken as the most optimal. A further increase in the injection mass, both for octane and dodecane at optimal pressures, worsens the combustion process. The results obtained are of fundamental and practical importance and can be used to develop the theory of combustion of gaseous and liquid fuels.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The influence of different seed positions on mechanical properties of stochastic structures with semi-controlled nodes;2023 International Conference on Applied Mathematics & Computer Science (ICAMCS);2023-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3