Multi-effect Distillation with Heat Pump Integrated

Author:

Abdelhakim Benali1

Affiliation:

1. Laboratory of ENERGY in ARID Zones, Faculty of Sciences and Technology, Tahri Mohammed Béchar University, Street of Independence Béchar , Bp 417,08000, ALGERIA

Abstract

This article presents a study and simulation of the desalination system consisting of a heat pump HP and a multi-effect distillation MED unit. Electric energy using in HP is provided by photovoltaic panels and wind turbines ,for a possible installation of the system on an isolated sites.The proposed desalination system uses an additional source of thermal energy in order to make HP and MED integration optimal and to reduce HP Electrical energy consumption per cubic meter of distilled water (kwh/m3).The main idea is to use geothermal-solar thermal energy and heat from HP as two thermal inputs in the multi-effect distillation unit MED. Thermal rejection from MED is recovered to be used as heat input in HP that based on mechanical compression of working fluid. The HP can use the working fluids (R22, ammonia) for a number of reasons, including that the two previous fluids are very dense at the saturated vapor state compared to water. A thermodynamic analysis of the desalination system was performed at steady state, using the thermodynamic properties of the Coolprop database. The simulation results showed a minimum value of electrical energy consumption, without consideration the contribution of auxiliary thermal energy :(10.487 kwh/m3 | effect numbre:5).The simulation results showed a minimum value of volumetric flow rate of the working fluid ,before compression : (17.685 m3 of working fluid per m3 of distilled water | effect numbre:12 | contribution ratio of auxiliary thermal energy:46.6 %).

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3